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Abstract
The interplay between the Fano effect and electronic correlations in a double-
quantum-dot (DQD) structure is investigated by the finite-U slave-boson mean-
field method, and the focus is put on the influence of the Aharonov–Bohm (AB)
effect on the transport properties. In the singly occupied regime, with weak
antiferromagnetic correlation, the Fano–Kondo effect greatly suppresses the
conductance G, whereas the strong parity splitting blocks the path through the
DQD, which is similar to the time-reversal symmetric case. At the particle–hole
symmetric point the peak usually still exists in the would-be peak-zero structure,
but with the magnetic flux increased the zero is enhanced and eventually
removed at quarter of a flux quantum. Results similar to the frequency doubling
of AB oscillation and the ‘pinning’ of the AB maximum can be found, which
account for the appearance of a new transmission zero in the variation of G with
the energy levels on dots.

1. Introduction

The interplay between quantum interference and electronic correlations is important in
mesoscopic physics. When a discrete energy level is embedded in a continuum energy state,
the quantum interference between two configurations—one through the resonant level and the
other directly through the continuum—leads to the Fano effect [1], a ubiquitous phenomenon
first found in atomic physics then in other areas [2–5], which is characterized by an asymmetric
line shape. Because of their tunability, quantum dot (QD) systems have attracted a lot of
attention. When a dot is connected to leads, the coupling between the localized spin on the
dot and conduction electrons leads to the Kondo correlation, which is described by an energy
scale TK, the so called Kondo temperature. When a dot is in the Kondo regime [6–10], a spin
singlet state is formed by the localized spin and conduction electrons. This singlet state yields
the Abrikosov–Suhl resonance and plays an important role in the electronic transport. When
the Fano effect is introduced in a system with one QD, the so-called Fano–Kondo effect is
found [2, 3, 11–14]. The recent development in nanofabrication techniques makes it possible
to observe the Fano effect in electronic transport through a hybrid system of one QD and an
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Figure 1. Schematic illustration of the DQD structure.

Aharonov–Bohm (AB) ring [4, 5], so that the relative phase between the two configurations
can be artificially adjusted by an external magnetic flux �. The influence of the AB effect is
studied on a QD system with the Fano coupling, and the frequency doubling of AB oscillation
and the ‘pinning’ of the AB maximum are predicted in theory [11].

If double quantum dots (DQDs) [15–19] are coupled with each other by the tunnelling
matrix element td, the Coulomb interaction U in dots yields an effective antiferromagnetic
(AF) coupling JM = √

(2td)2 + (U/2)2 − U/2 (or ∼4t2
d /U if td � U ). This coupling tends

to create a singlet state between the localized spins on the two dots. When the two dots are
connected to the left and right leads in a ‘lead–dot–dot–lead’ series, the competition between
the Kondo and AF correlations yields a resonant conductance peak in JM ∼ TK at the particle–
hole symmetric point [17–19], whereas in the limit JM � TK and td � U/4 the conductance
G approaches zero. In a recent paper [20], we have studied how the interplay between the
Fano effect and electronic correlations affects the transport properties when the Fano effect
is introduced in a DQD system. We find in the singly occupied regime, when JM � TK,
the Fano–Kondo effect greatly suppresses G, whereas the strong parity splitting results in the
blockade of the path through the DQDs. At the particle–hole symmetric point, the competition
between the Kondo and AF correlations still leads to a resonant peak in JM ∼ TK, but due
to the Fano effect, the resonant peak is always accompanied with a transmission zero. This
peak-zero structure governs the variation trend of G with the energy levels on dots.

However, in that work, the time-reversal symmetry is supposed and no external magnetic
field is applied. Consequently, it is natural to ask, if an external magnetic flux � is applied,
(i) how does G behave in the limits JM → 0 and ∞, (ii) how does the peak-zero structure
change, and (iii) can the frequency doubling of AB oscillation and the ‘pinning’ of the AB
maximum be found in DQD systems? To answer these questions, we assume a structure similar
to that in [20], where two dots and two leads are arranged in a ‘lead–dot–dot–lead’ series and
the two leads are also directly connected to each other (cf the schematic illustration of the
structure in figure 1). But here, a magnetic flux � penetrates the area enclosed by the two
paths. The finite-U slave-boson mean-field theory (f-U SBMFT) of Kotliar and Ruckenstein
(KR) [19, 21, 22] is adopted to treat the electronic correlations. In the singly occupied regime,
with JM � TK, the Fano–Kondo effect greatly suppresses the conductance, and with td � U/4
the strong parity splitting blockades the path through the DQDs. These results are similar to the
situation with � = 0. At the particle–hole symmetric point, in the would-be peak-zero structure
around JM ∼ TK, the peak usually still exists, but with � increased the zero is enhanced and
eventually removed at quarter of a flux quantum. Phenomena similar to the frequency doubling
of AB oscillation and the ‘pinning’ of the AB maximum can be found, which accounts for the
appearance of a new transmission zero in the variation of G with the energy levels on dots.

The organization of this paper is as follows. In section 2, the theoretical model and
calculation method are illustrated. In section 3, the numerical results and discussion of them
are presented. A brief summary is given in section 4.
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2. Model and formulae

In the present paper, we investigate the influence of an external magnetic flux on the transport
properties through a DQD system at zero temperature under the interplay between the Fano
effect and electronic correlations. In figure 1, the system is schematically illustrated, where
two identical dots and two identical leads are arranged in a ‘lead–dot–dot–lead’ series and the
two leads are also directly coupled to each other. Here, the two dots are taken as Anderson
impurities, each of which has one single-particle energy level ε and an on-site Coulomb
interaction U . The tunnelling matrix elements of dot–dot, dot–lead and lead–lead are td, tL
and tr, respectively. As we know from [20], although the considered system is symmetric,
the obtained results are robust to the detuning between the two dots only if the detuning is
not too strong. But unlike [20], the time-reversal symmetry is broken by a magnetic flux �,
which penetrates the area enclosed by the two paths. Because the two dots and their nearest
neighbouring sites on leads can be regarded as forming an AB ring, and because no magnetic
field is directly applied on the structure, we can make a convenient choice of the gauge for
the vector potential to affect only the phase of the wavefunction at the direct hopping bond
between the two leads [23], and � enters only the tunnelling matrix element of lead–lead treiϕ ,
where ϕ = 2π�/�0, with �0 = hc/e the flux quantum. Then, this mesoscopic system can be
described by the following 1D tight-binding Hamiltonian:

H = HL + HD + HT, (1)

where HL, HD and HT are the Hamiltonians of leads, dots and the coupling between dots and
leads. They are

HL = −t

[ −2∑

i=−∞,σ

+
∞∑

i=1,σ

]

(c†
iσ ci+1σ + H.c.), (2)

HD =
∑

α=L ,R

(
∑

σ

εc†
ασ cασ + Unα↑nα↓

)

− td
∑

σ

(c†
Lσ cRσ + H.c.) (3)

and

HT = −
∑

σ

(tLc†
−1σ cLσ + tLc†

1σ cRσ + tre
iϕc†

1σ c−1σ + H.c.), (4)

with the spin index σ = ↑ or ↓.
If one dot with energy level ε and Coulomb repulsion U is connected to leads with the

hopping integral tL, the Kondo temperature can be expressed as [24] TK = U
√

JK
2π

exp(−π/JK),
with JK = −2U�

ε(ε+U )
. Here, the hybridization strength � = πρ(εF)t2

L, with ρ(εF) the density
of states at the Fermi energy. The correlation length of a spin singlet at zero temperature
ξK = h̄vF/TK, with vF the Fermi velocity. In the thermodynamic limit [25], � = 2t2

L/t and
ξK = 2t/TK at εF = 0. In the present paper, we always set εF = 0. On the other hand, in the
DQD system, if tL is set as zero, electrons can only tunnel through the direct channel. At this
time, the transmissivity is |Tr|2 = 4

(tr/t+t/tr)2 .
The f-U SBMFT of KR [19, 21] is adopted to treat the electronic correlations. It is

a powerful nonperturbative tool to study the strongly correlated fermion system, and is not
limited to the infinite-U case [26]. In the DQD structure, the AF coupling JM is introduced
implicitly by this method as a function of U and td, but not as an artificial parameter in the
Hamiltonian [16]. In the framework of this approach, eight auxiliary boson fields eα , pασ and
dα are introduced, which act as projection operators onto the empty, singly occupied and doubly
occupied electronic states at the dot ‘α’, respectively. To eliminate the unphysical states, six
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constraints are imposed:
∑

σ p†
ασ pασ + e†

αeα + d†
αdα = 1 and c†

ασ cασ = p†
ασ pασ + d†

αdα. To
obtain exact results in the noninteracting limit, the fermion operator cασ should be replaced by
cασ zασ , with zασ = (1 − d†

αdα − p†
ασ pασ )−1/2(e†

α pασ + p†
ασ̄ dα)(1 − e†

αeα − p†
ασ̄ pασ̄ )−1/2.

Therefore, the Hamiltonian (1) can be replaced by the following effective Hamiltonian:

Heff = HL + H̃D + H̃T +
∑

α=L ,R

{

λ(1)
α

(
∑

σ

p†
ασ pασ + e†

αeα + d†
αdα − 1

)

+
∑

σ

λ(2)
ασ (c†

ασ cασ − p†
ασ pασ − d†

αdα)

}

, (5)

where the six constraints are incorporated by the six Lagrange multipliers λ
(1)
α and λ

(2)
ασ . The

original HD and HT are changed to

H̃D =
∑

α=L ,R

(

ε
∑

σ

c†
ασ cασ + Ud†

αdα

)

− td
∑

σ

(z†
Lσ c†

Lσ cRσ zRσ + H.c.) (6)

and

H̃T = −
∑

σ

(
tLc†

−1σ cLσ zLσ + tLc†
1σ cRσ zRσ + tre

iϕc†
1σ c−1σ + H.c.

)
, (7)

whereas HL remains unchanged.
To solve the effective Hamiltonian (5), we can integrate out the fermionic variables from

the corresponding effective action, write down the saddle-point free-energy functional, and
then determine the expectation values of boson fields by minimization of the saddle-point
free-energy functional at zero temperature as KR did in their original paper [21]. But, this
approach is equivalent to a mean-field approximation in which the slave-boson fields are first
replaced by their expectation values, then the values of eα , pασ , dα, λ

(1)
α and λ

(2)
ασ are obtained

by minimization of the ground state energy E0 of the essentially noninteracting effective
Hamiltonian (5) with respect to these parameters [22]. This leads to a set of self-consistent
equations [19, 22]. Because of the spin degeneracy, only ten variational parameters should be
determined. They are eα, pα, dα, λ

(1)
α , and λ

(2)
α . To construct these self-consistent equations,

we need knowledge of the ground state |0〉. It is obtained from the calculation of a cluster, at the
centre of which is located the DQD structure. The single-particle eigenstates can be calculated
by direct numerical diagonalization, and the ground state |0〉 is constructed by adding electrons
to the lowest unoccupied levels one by one until the Fermi level. If the cluster size is much
larger than ξK, the results obtained from the cluster calculation can be regarded as those of the
original system [27, 28].

As soon as these variational parameters are obtained, the conductance G through the
structure at zero temperature can be obtained from the two-terminal Landauer–Büttiker (LB)
formula:

G = |T (εF)|2, (8)

because the effective Hamiltonian (5) is essentially noninteracting [29]. Here T (εF) is the
transmission coefficient of an incident electron with the Fermi energy. In writing the above
equation, the spin index and the unit 2e2/h are omitted. For continuum models, some
authors adopted the LB formula combined with the slave-boson mean-field method to calculate
G via the Green function technique [13, 19]. But for a tight-binding Hamiltonian, the
transmission coefficient T can be calculated more straightforwardly via the transfer matrix
(TM) method [30, 31]. The transfer matrixes corresponding to the effective noninteracting
Hamiltonian (5) hold the same forms as those corresponding to the original Hamiltonian (1)
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G G

(a) (b)

Figure 2. (a) G–ε curves with td = 0.01 (solid), 0.1 (dashed), 0.2 (dotted), 0.4 (dash–dotted) and
0.8 (dash–dot–dotted) and (b) G–td curve with ε = −U/2 for tr = 0. The other parameters are
t = 1, tL = 0.35 and U = 1.4.

when the Coulomb interaction U is set as 0 in equation (1). In the mean-field approximation,
the electron–electron interaction is represented in the transfer matrixes by the replacement of
the undressed parameters by the renormalized ones: ε̃α = ε+λ

(2)
α , t̃d = tdzLzR and t̃Lα = tLzα .

This is similar to that in the conductance calculation via the Green function technique [13, 19].

3. Results and discussion

To compare the results with the previous work, we take the same parameters as in [20]. They
are t = 1, U = 1.4 and tL = 0.35. Consequently, TK and ξK are 0.0280 and 71.5, respectively,
at the particle–hole symmetric point ε = −U/2. To guarantee good convergence, the cluster
size is set as 800 with td < 0.1, 400 with 0.1 � td < 0.2 and 200 with 0.2 � td in the
determination of the variational parameters.

Although the results of the time-reversal symmetric case have been obtained in [20], they
are briefly presented here for the convenience of readers. We first give our attention to the
situation with tr = 0, which is illustrated in figure 2, and compare it with the exact numeric
results. In figure 2(a), the G–ε curves with different td are given. Here and below, only the
right parts with ε � −U/2 are plotted, because the G–ε curves are symmetric with respect to
ε = −U/2. For td = 0.01 and 0.1, a plateau is found in the singly occupied regime, and its
height is close to unity with td = 0.1 and close to zero with td = 0.01. For td = 0.2, 0.4 and
0.8, the plateau splits into two resonant peaks. With td increased, the splitting is strengthened
and the G value at ε = −U/2 is decreased. For any td, in the empty and doubly occupied
regimes, G always approaches zero. In figure 2(b), the G–td curve at ε = −U/2 is given. With
td → 0, JM � TK and two Kondo spin singlets are formed between the localized spins on dots
and conduction electrons on the adjacent leads. Because the tunnelling between the two singlet
states is very small, G approaches zero. When td � U/4, the parity splitting leads to the double
occupancy on the bonding orbital of the two dots, which tends to block the electronic transport.
A resonant peak emerges at t R

d = 0.12, which corresponds to JM = 0.04 ∼ TK. This resonant
peak characterizes the competition between the Kondo and AF correlations. Here, the values of
JM for a series of td are given in table 1. Comparing figures 2(a) and (b), we can see that only
when td � t R

d can resonant peaks appear in the G–ε curves. All of these are consistent with
the exact numeric results [17, 18], and, albeit a mean-field method, the f-U SBMFT grasps the
basic physics of the DQD structure.



1660 Z-Y Zhang

G

G

G

G

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. G–ε curves with tr = 0.5 (upper row) and 1 (lower row). From the left column to the
right, ϕ increases from 0 to π with an interval of π/4. Lines with different textures correspond to
different td, with td = 0.01 (solid), 0.1 (dashed), 0.2 (dotted), 0.4 (dash–dotted) and 0.8 (dash–dot–
dotted). The other parameters are the same as in figure 2.

Table 1. Table of JM =
√

(2td)2 + (U/2)2 −U/2 with U = 1.4. When tL = 0.35, TK = 0.0280,
which is almost identical to the JM at td = 0.1.

td 0.01 0.1 0.12 0.2 0.4 0.8

JM 2.86 × 10−4 0.0280 0.0400 0.106 0.363 1.05

In figures 3(a) and (f), we plot the G–ε curves for ϕ = 0 with tr = 0.5 and 1,
respectively. The direct tunnelling cannot eliminate the electronic correlations in the system,
but introduces the quantum interference between different channels. As in the system with a
single QD [11, 12], G always approaches |Tr|2 when |ε + U/2| � 0. (Here, |Tr|2 = 0.64 for
tr = 0.5 and 1 for tr = 1.) For tr = 0.5, in the G–ε curves with td = 0.4 and 0.8 there are
one resonant peak and one transmission zero, but with td = 0.1 and 0.2 only one resonant peak
appears, and with td = 0.01 neither resonant peak nor transmission zero emerge. The same
character is also found for tr = 1, but here the resonant peaks are merged into the tails with
unit conductance. As we have said, because the G–ε curves are symmetric for a DQD system,
only the right parts with ε � −U/2 are plotted. In fact, the resonant peak (transmission zero)
appears in a pair. This is different from the system with a single QD, where one resonant
peak and one transmission zero always appear simultaneously and are located at the opposite
sides of the particle–hole symmetric point, which leads to asymmetric G–ε curves. The G–td
curves at ε = −U/2 for tr = 0.5 and 1 are plotted in figures 4(a) and (b), respectively, by
solid lines. For any tr, G approaches zero if td is close to zero. This is a clear demonstration
of the Fano–Kondo effect: if td = 0, the two dots are decoupled from each other and can be
regarded as side-coupled to a 1D chain. The electrons tunnelling through one side-coupled
QD structure can take two different paths—one through the energy level on the dot and the
other directly through the continuum, which leads to an exact zero conductance in the Kondo
regime [13]. Consequently, no matter whether tr is strong or weak, the conductance of the
whole system is exactly zero. When td is introduced, the Kondo correlation still dominates and
that kind of Fano–Kondo effect plays a major role if JM � TK. This explains the appearance
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GG

(a) (b)

Figure 4. G–td curves with ε = −0.7 and U = 1.4 for tr = 0.5 (a) and 1 (b). Lines with
different texture correspond to different ϕ, with ϕ = 0 (solid), π/4 (dashed), π/2 (dotted), 3π/4
(dash–dotted) and π (dash–dot–dotted).

of the low plateau in the singly occupied regime with td = 0.01 in figures 3(a) and (f). With
JM ∼ TK, the competition between the Kondo and AF correlations still yields a resonant peak
in G–td curves. But the introduction of quantum interference between the direct channel and
the path through the two dots leads to a transmission zero accompanied with the resonant peak.
This is a demonstration of the interplay between the Fano effect and the competition of the
Kondo and AF correlations. If the positions of peak and zero are set as t R

d and t D
d , respectively,

only when td > t R(D)
d can the resonant peak (transmission zero) appear in the G–ε curves.

In the G–td curves, with td further increased, G approaches |Tr|2, the transmissivity through
the direct channel. In this regime, the strong parity splitting leads to double occupancy on the
bonding orbital. This results in the blockade of the channel through the DQDs, and the quantum
interference disappears.

All of the above results have been obtained in our previous work [20] (where the qualitative
relations between t R

d (t D
d ) and tr have also been obtained, but they are not given here). Now,

we turn our attention to the situation with ϕ 
= 0. Because of the phase locking property of
the two-terminal conductance G(ϕ) = G(−ϕ), only the results with ϕ ∈ [0, π] are given. The
variation of G with ε is presented in figure 3, where curves with identical ϕ and different td are
illustrated in the same graph. Graphs in the upper row correspond to structures with tr = 0.5
and those in the lower one to tr = 1. As in the situation with ϕ = 0 [20], G always approaches
|Tr|2 when |ε + U/2| � 0. When td = 0.01, a low plateau is formed in the singly occupied
regime for any tr and ϕ. As we have said in the preceding paragraph, for ϕ = 0, the appearance
of a low plateau in the singly occupied regime with td = 0.01 is the consequence of the Fano–
Kondo effect. Now, we can see that with JM � TK the influence of the AB effect is weak
in that regime. This is another difference between the DQD system and the single QD one,
where the Fano–Kondo effect is characterized by a suppressed Kondo plateau for ϕ = 0, and
the plateau height is sensitive to the external magnetic flux. This difference is entirely caused
by the different structures of the two systems. In the single-QD system the dot is embedded in
the arm parallel to the direct channel, whereas in the DQD system the two dots are side-coupled
to leads at td = 0. When td 
= 0 but JM � TK, the Kondo correlation prevails over the AF one,
and in the Kondo regime the two dots can be first regarded as side-coupled to leads. Although
the Fano effect plays an important role in both of these two systems, the different interference
configurations lead to the different properties of the Fano–Kondo effect.
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These characteristics are similar to those of the time-reversal symmetric case. However,
breaking the time-reversal symmetry also introduces some new characteristics. Under a specific
set of td and tr, with ϕ introduced, the resonant peak in a G–ε curve, if it appears when ϕ = 0,
is usually kept with the same td and tr. But its position is moved towards the negative ε

direction, and because of this movement it is possible for a would-be resonant peak to disappear.
Meanwhile, with ϕ increased from zero, the transmission zero is enhanced, and at ϕ = π/2,
quarter of a flux quantum, the corresponding residual dip almost entirely disappears. However,
with ϕ further increased a new dip emerges, which is located farther away from the particle–
hole symmetric point than the remaining resonant peak, and when ϕ = π , half of a flux
quantum, a new transmission zero is formed for every td, even td = 0.01. But as illustrated in
figures 3(a) and (f), for ϕ = 0, neither resonant peak nor transmission zero can be found for
td = 0.01. This new emerging transmission zero is caused by the AB effect. These results can
be found for both tr = 0.5 and 1, and the only difference between these two situations is that
the resonant peak for tr = 1 is merged into the tail with unit conductance.

In figures 4(a) and (b), the influence of ϕ on the G–td curves is illustrated for structures
with tr = 0.5 and 1, respectively. According to our experience on the situation with ϕ = 0,
we hope that the G–td curve at the particle–hole symmetric point can also govern the variation
trend of G with ε when ϕ 
= 0. For any ϕ, G approaches zero with td → 0 because of
the Fano–Kondo effect [13], which is consistent with the appearance of a low conductance
plateau in the singly occupied regime. In the other limit with td � U/4, the strong parity
splitting leads to the double occupancy on the bonding orbital, which blockades the channel
through the DQDs, and G approaches |Tr|2. These properties are identical with the time-
reversal symmetric case. In the intermediate region, the quantum interference between two
paths—one through the direct channel and the other through the two dots via td—plays an
important role. With ϕ = 0, the competition between the Kondo and AF correlations leads
to a resonant peak, which is accompanied by a transmission zero coming from the quantum
interference destruction. As an external magnetic flux is applied, the relative phase of electronic
wave functions through different paths is changed, and the condition of quantum interference
destruction is no longer satisfied. The zero in the peak-zero structure is enhanced, and when
ϕ = π/2 the corresponding residual dip is removed entirely. As a result, the peak is merged
into the tail with unit conductance for tr = 1, whereas for tr = 0.5, or more generally for tr 
= 0
and 1, the peak always exists, but its position is moved towards positive direction. At ϕ = π ,
although it looks a little like the line shape of the G–td curve with tr = 0, the preserved peak
does not come purely from the competition between the Kondo and AF correlation, but from
the interplay between the quantum interference and the electronic correlations. (Of course, with
td � U/4, G approaches different values for tr being and not being zero.) It is the AB effect
that turns the would-be peak-zero structure into a peak. These results are consistent with the
movement of resonant peaks in G–ε curves and can account for the removal of transmission
zeros at ϕ = π/2. However, for ϕ > π/2, the peak-zero structure in G–td curve is destroyed
by the AB effect and the zero disappears. Where does the new transmission zero in the G–ε

curve come from?
In figure 5, the variation of G with ε is presented in a different manner, where curves with

identical td and different ϕ are illustrated in the same graph. As in figure 3, the upper row of
graphs corresponds to tr = 0.5 and the lower to tr = 1. Consider the situation with tr = 0.5
first. In a structure with td = 0.01, as ϕ increases, a dip emerges in the mixed-valence regime,
and at ϕ = π , this dip is turned into a transmission zero. At any specific ε, G decreases
monotonically as ϕ is increased from zero to π . Because of the phase locking of the two-
terminal conductance, only the results with ε ∈ [0, π] are given, and practically G oscillates
with ϕ in a period of 2π . With td = 0.1, as ϕ increases, the resonant peak moves towards the
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Figure 5. G–ε curves with tr = 0.5 (upper row) and 1 (lower row). From the left column to the
right, td = 0.01, 0.1, 0.2, 0.4 and 0.8, respectively. Lines with different textures correspond to
different ϕ, with ϕ = 0 (solid), π/4 (dashed), π/2 (dotted), 3π/4 (dash–dotted) and π (dash–dot–
dotted). The other parameters are the same as in figure 2.

negative direction and disappears. Meanwhile, a dip emerges, which turns into a transmission
zero at ϕ = π . Compared with that for td = 0.01, the position of this transmission zero moves
towards the doubly occupied regime. Here, G also decreases monotonically with ϕ except in
the range from ε = −U/2 to about −0.24, where G first increases with ϕ then decreases and
a component of period π enters the G oscillation. With td = 0.2, the nonmonotonic range is
expanded and the position of the new emerging transmission zero is further moved. A variation
trend of the G–ε curve similar to the ‘pinning’ of the AB maximum [11] is found in structures
with td = 0.4 and 0.8. Compared with the G–ε curves in figure 2(a) for tr = 0, the resonant
peak is recovered when ϕ = π/2, and the G–ε curve for ϕ looks ‘symmetric’ with that for
π − ϕ. But in a system with one QD, it is the resonant Kondo plateau that is recovered when
ϕ = π/2. In a DQD system, the recovered resonant peak is out of the singly occupied regime.
It is in the mixed-valence regime when td = 0.4, and is further moved with larger td. Despite
this difference, the ‘pinning’ of the AB maximum found in these two types of systems results
from the same origin—the AB effect. Similarly, the new emerging transmission zero in the G–ε

curve for ϕ = π also comes from the change of the relative phase between the two paths caused
by the external magnetic flux. Meanwhile, with td = 0.4 and 0.8G monotonically increases
and decreases with ϕ at ε = −U/2 and 3U/4, respectively, whereas in the intermediate region
around the recovered resonant peak G first increases with ϕ then decreases, a phenomenon
resembling the frequency doubling of the AB oscillation found in single-QD systems [11]. In
the situation with tr = 1, this phenomenon can also be found, but the variation of G is not
strictly monotonic at ε = −U/2 and 3U/4 for td = 0.4 and 0.8, although the amplitude of
variation is small.

Despite the fact that there is no structure in the G–td curve which is connected with the new
emerging transmission zero in the G–ε curve, the properties given in the preceding paragraph
are consistent with those exhibited in figure 4. For tr 
= 0, at the particle–hole symmetric point,
G monotonically decreases (increases) with ϕ in the range 0 � td < t B

d (tU
d � td < ∞). In

the intermediate region, G first increases then decreases as ϕ is changed from zero to π . The
‘pinning’ of the AB maximum and the frequency doubling of AB oscillation can only happen
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for td > tU
d . For tr = 0.5t B

d and tU
d are 0.086 and 0.22, respectively, whereas for tr = 1,

because |Tr|2 = 1, the peak in the G–td curve is merged into the tail with unit conductance
when ϕ � π/2 and tU

d approaches infinity. The situation with tr = 1 can be regarded as an
extreme case. Here, for simplicity of calculation, we only give the results of tr = 0.5 as a
representative for tr 
= 1, but the basic properties exhibited in these results are irrelevant with
the specific value of tr.

4. Summary

In summary, we investigate the interplay between the Fano effect and electronic correlations
in a DQD system by the f-U SBMFT, and pay attention to the influence of the AB effect
on the transport properties through the structure. Despite the introduction of ϕ, in the singly
occupied regime, with JM � TK, the Fano–Kondo effect greatly suppresses the conductance,
whereas with td � U/4 the strong parity splitting blockades the path through the DQDs,
which is similar to the time-reversal symmetric case. At the particle–hole symmetric point, in
the would-be peak-zero structure resulting from the interplay between the Fano effect and the
competition between the Kondo and AF correlations, the peak still exists, but with ϕ increased
the zero is enhanced and eventually removed at ϕ = π/2, which corresponds to quarter of a
flux quantum. Results similar to the frequency doubling of AB oscillation and the ‘pinning’ of
the AB maximum can be found, which account for the appearance of a new transmission zero
in the variation of G with the energy level ε on dots.
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